Get your own Python server Result Size: 625 x 533
Python code
data.csv
 
x
 
import pandas
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()
df = pandas.read_csv("data.csv")
X = df[['Weight', 'Volume']]
y = df['CO2']
scaledX = scale.fit_transform(X)
regr = linear_model.LinearRegression()
regr.fit(scaledX, y)
scaled = scale.transform([[2300, 1.3]])
predictedCO2 = regr.predict([scaled[0]])
print(predictedCO2)
[107.2087328]