Get your own Python server Result Size: 625 x 565
x
 
import numpy
from sklearn import metrics
actual = numpy.random.binomial(1,.9,size = 1000)
predicted = numpy.random.binomial(1,.9,size = 1000)
Accuracy = metrics.accuracy_score(actual, predicted)
Precision = metrics.precision_score(actual, predicted)
Sensitivity_recall = metrics.recall_score(actual, predicted)
Specificity = metrics.recall_score(actual, predicted, pos_label=0)
F1_score = metrics.f1_score(actual, predicted)
#metrics:
print({"Accuracy":Accuracy,"Precision":Precision,"Sensitivity_recall":Sensitivity_recall,"Specificity":Specificity,"F1_score":F1_score})
{'Accuracy': 0.8, 'Precision': 0.8863892013498312, 'Sensitivity_recall': 0.8883878241262683, 'Specificity': 0.10619469026548672, 'F1_score': 0.8873873873873874}