Get your own Python server Result Size: 625 x 565
x
 
import numpy
from sklearn import linear_model
X = numpy.array([3.78, 2.44, 2.09, 0.14, 1.72, 1.65, 4.92, 4.37, 4.96, 4.52, 3.69, 5.88]).reshape(-1,1)
y = numpy.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1])
logr = linear_model.LogisticRegression()
logr.fit(X,y)
def logit2prob(logr, X):
  log_odds = logr.coef_ * X + logr.intercept_
  odds = numpy.exp(log_odds)
  probability = odds / (1 + odds)
  return(probability)
print(logit2prob(logr, X))
[[0.60749955]
 [0.19268876]
 [0.12775886]
 [0.00955221]
 [0.08038616]
 [0.07345637]
 [0.88362743]
 [0.77901378]
 [0.88924409]
 [0.81293497]
 [0.57719129]
 [0.96664243]]