Get your own Python server Result Size: 625 x 565
x
 
import numpy
from sklearn import linear_model
X = numpy.array([3.78, 2.44, 2.09, 0.14, 1.72, 1.65, 4.92, 4.37, 4.96, 4.52, 3.69, 5.88]).reshape(-1,1)
y = numpy.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1])
logr = linear_model.LogisticRegression()
logr.fit(X,y)
log_odds = logr.coef_ 
odds = numpy.exp(log_odds)
print(odds)
[[4.03541657]]