from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import ShuffleSplit, cross_val_score
X, y = datasets.load_iris(return_X_y=True)
clf = DecisionTreeClassifier(random_state=42)
ss = ShuffleSplit(train_size=0.6, test_size=0.3, n_splits = 5)
scores = cross_val_score(clf, X, y, cv = ss)
print("Cross Validation Scores: ", scores)
print("Average CV Score: ", scores.mean())
print("Number of CV Scores used in Average: ", len(scores))
Cross Validation Scores: [0.91111111 0.97777778 0.93333333 0.97777778 0.95555556] Average CV Score: 0.9511111111111111 Number of CV Scores used in Average: 5