Run ❯
Get your
own
website
×
Change Orientation
Change Theme, Dark/Light
Go to Spaces
Python
C
Java
class Graph: def __init__(self, size): self.adj_matrix = [[0] * size for _ in range(size)] self.size = size self.vertex_data = [''] * size def add_edge(self, u, v, c): self.adj_matrix[u][v] = c def add_vertex_data(self, vertex, data): if 0 <= vertex < self.size: self.vertex_data[vertex] = data def dfs(self, s, t, visited=None, path=None): if visited is None: visited = [False] * self.size if path is None: path = [] visited[s] = True path.append(s) if s == t: return path for ind, val in enumerate(self.adj_matrix[s]): if not visited[ind] and val > 0: result_path = self.dfs(ind, t, visited, path.copy()) if result_path: return result_path return None def fordFulkerson(self, source, sink): max_flow = 0 path = self.dfs(source, sink) while path: path_flow = float("Inf") for i in range(len(path) - 1): u, v = path[i], path[i + 1] path_flow = min(path_flow, self.adj_matrix[u][v]) for i in range(len(path) - 1): u, v = path[i], path[i + 1] self.adj_matrix[u][v] -= path_flow self.adj_matrix[v][u] += path_flow max_flow += path_flow path_names = [self.vertex_data[node] for node in path] print("Path:", " -> ".join(path_names), ", Flow:", path_flow) path = self.dfs(source, sink) return max_flow g = Graph(6) vertex_names = ['s', 'v1', 'v2', 'v3', 'v4', 't'] for i, name in enumerate(vertex_names): g.add_vertex_data(i, name) g.add_edge(0, 1, 3) # s -> v1, cap: 3 g.add_edge(0, 2, 7) # s -> v2, cap: 7 g.add_edge(1, 3, 3) # v1 -> v3, cap: 3 g.add_edge(1, 4, 4) # v1 -> v4, cap: 4 g.add_edge(2, 1, 5) # v2 -> v1, cap: 5 g.add_edge(2, 4, 3) # v2 -> v4, cap: 3 g.add_edge(3, 4, 3) # v3 -> v4, cap: 3 g.add_edge(3, 5, 2) # v3 -> t, cap: 2 g.add_edge(4, 5, 6) # v4 -> t, cap: 6 source = 0; sink = 5 print("The maximum possible flow is %d " % g.fordFulkerson(source, sink)) #Python
#include
#include
#include
#define V 6 // Total vertices // Graph structure to hold the adjacency matrix and vertex names typedef struct { int adjMatrix[V][V]; char* vertexNames[V]; } Graph; // Initialize the graph with vertex names and zero capacities void initGraph(Graph* g, char* names[]) { memset(g->adjMatrix, 0, sizeof(g->adjMatrix)); for (int i = 0; i < V; i++) { g->vertexNames[i] = names[i]; } } // Add edge to the graph void addEdge(Graph* g, int from, int to, int cap) { g->adjMatrix[from][to] = cap; } // Depth-First Search (DFS) for finding an augmenting path int dfs(Graph* g, int s, int t, int parent[]) { static int visited[V]; // Static array to keep track of visited vertices memset(visited, 0, sizeof(visited)); // Inner DFS function to recursively search for path int dfsVisit(int u) { visited[u] = 1; if (u == t) return 1; // Sink reached for (int v = 0; v < V; v++) { if (!visited[v] && g->adjMatrix[u][v] > 0) { parent[v] = u; if (dfsVisit(v)) return 1; // Path found } } return 0; } return dfsVisit(s); } // Ford-Fulkerson algorithm for finding maximum flow int fordFulkerson(Graph* g, int source, int sink) { int u, v, max_flow = 0, parent[V]; while (dfs(g, source, sink, parent)) { int path_flow = INT_MAX; // Find minimum capacity in the found path for (v = sink; v != source; v = parent[v]) { u = parent[v]; path_flow = path_flow < g->adjMatrix[u][v] ? path_flow : g->adjMatrix[u][v]; } // Update capacities and reverse edges along the path for (v = sink; v != source; v = parent[v]) { u = parent[v]; g->adjMatrix[u][v] -= path_flow; g->adjMatrix[v][u] += path_flow; } max_flow += path_flow; // Print the path from source to sink printf("Path: "); int path[V], pathSize = 0; for (v = sink; v != source; v = parent[v]) { path[pathSize++] = v; } for (int i = pathSize - 1; i >= 0; i--) { printf("%s", g->vertexNames[path[i]]); if (i > 0) printf(" -> "); } printf(", Flow: %d\n", path_flow); } return max_flow; } int main() { Graph g; char* vertexNames[] = {"s", "v1", "v2", "v3", "v4", "t"}; initGraph(&g, vertexNames); // Adding edges with capacities addEdge(&g, 0, 1, 3); addEdge(&g, 0, 2, 7); addEdge(&g, 1, 3, 3); addEdge(&g, 1, 4, 4); addEdge(&g, 2, 1, 5); addEdge(&g, 2, 4, 3); addEdge(&g, 3, 4, 3); addEdge(&g, 3, 5, 2); addEdge(&g, 4, 5, 6); printf("The maximum possible flow is %d\n", fordFulkerson(&g, 0, 5)); return 0; } //C
import java.util.ArrayList; import java.util.Arrays; import java.util.List; public class Main { static class Graph { private int[][] adjMatrix; private String[] vertexData; private int size; public Graph(int size) { this.size = size; this.adjMatrix = new int[size][size]; this.vertexData = new String[size]; } public void addEdge(int u, int v, int capacity) { adjMatrix[u][v] = capacity; } public void addVertexData(int vertex, String data) { vertexData[vertex] = data; } private List
dfs(int s, int t, boolean[] visited) { if (s == t) { List
path = new ArrayList<>(); path.add(s); return path; } visited[s] = true; for (int v = 0; v < size; v++) { if (!visited[v] && adjMatrix[s][v] > 0) { List
subPath = dfs(v, t, visited); if (subPath != null) { subPath.add(0, s); return subPath; } } } return null; } public int fordFulkerson(int source, int sink) { int maxFlow = 0; boolean[] visited = new boolean[size]; List
path; while ((path = dfs(source, sink, new boolean[size])) != null) { int pathFlow = Integer.MAX_VALUE; for (int i = 0; i < path.size() - 1; i++) { int u = path.get(i); int v = path.get(i + 1); pathFlow = Math.min(pathFlow, adjMatrix[u][v]); } for (int i = 0; i < path.size() - 1; i++) { int u = path.get(i); int v = path.get(i + 1); adjMatrix[u][v] -= pathFlow; adjMatrix[v][u] += pathFlow; } maxFlow += pathFlow; // Convert path from vertex indices to names List
pathNames = new ArrayList<>(); for (int vertex : path) { pathNames.add(vertexData[vertex]); } System.out.println("Path: " + String.join(" -> ", pathNames) + ", Flow: " + pathFlow); } return maxFlow; } } public static void main(String[] args) { Graph g = new Graph(6); String[] vertexNames = {"s", "v1", "v2", "v3", "v4", "t"}; for (int i = 0; i < vertexNames.length; i++) { g.addVertexData(i, vertexNames[i]); } g.addEdge(0, 1, 3); g.addEdge(0, 2, 7); g.addEdge(1, 3, 3); g.addEdge(1, 4, 4); g.addEdge(2, 1, 5); g.addEdge(2, 4, 3); g.addEdge(3, 4, 3); g.addEdge(3, 5, 2); g.addEdge(4, 5, 6); int source = 0, sink = 5; int maxFlow = g.fordFulkerson(source, sink); System.out.println("The maximum possible flow is " + maxFlow); } } // Java
Python result:
C result:
Java result:
Path: s -> v1 -> v3 -> v4 -> t , Flow: 3
Path: s -> v2 -> v1 -> v4 -> v3 -> t , Flow: 2
Path: s -> v2 -> v1 -> v4 -> t , Flow: 2
Path: s -> v2 -> v4 -> t , Flow: 1
The maximum possible flow is 8
Path: v1 -> v3 -> v4 -> t, Flow: 3
Path: v2 -> v1 -> v4 -> v3 -> t, Flow: 2
Path: v2 -> v1 -> v4 -> t, Flow: 2
Path: v2 -> v4 -> t, Flow: 1
The maximum possible flow is 8
Path: s -> v1 -> v3 -> v4 -> t, Flow: 3
Path: s -> v2 -> v1 -> v4 -> v3 -> t, Flow: 2
Path: s -> v2 -> v1 -> v4 -> t, Flow: 2
Path: s -> v2 -> v4 -> t, Flow: 1
The maximum possible flow is 8