Menu
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY AWS CYBERSECURITY DATA SCIENCE
     ❯   

Python Tutorial

Python HOME Python Intro Python Get Started Python Syntax Python Comments Python Variables Python Data Types Python Numbers Python Casting Python Strings Python Booleans Python Operators Python Lists Python Tuples Python Sets Python Dictionaries Python If...Else Python While Loops Python For Loops Python Functions Python Lambda Python Arrays Python Classes/Objects Python Inheritance Python Iterators Python Polymorphism Python Scope Python Modules Python Dates Python Math Python JSON Python RegEx Python PIP Python Try...Except Python User Input Python String Formatting

File Handling

Python File Handling Python Read Files Python Write/Create Files Python Delete Files

Python Modules

NumPy Tutorial Pandas Tutorial SciPy Tutorial Django Tutorial

Python Matplotlib

Matplotlib Intro Matplotlib Get Started Matplotlib Pyplot Matplotlib Plotting Matplotlib Markers Matplotlib Line Matplotlib Labels Matplotlib Grid Matplotlib Subplot Matplotlib Scatter Matplotlib Bars Matplotlib Histograms Matplotlib Pie Charts

Machine Learning

Getting Started Mean Median Mode Standard Deviation Percentile Data Distribution Normal Data Distribution Scatter Plot Linear Regression Polynomial Regression Multiple Regression Scale Train/Test Decision Tree Confusion Matrix Hierarchical Clustering Logistic Regression Grid Search Categorical Data K-means Bootstrap Aggregation Cross Validation AUC - ROC Curve K-nearest neighbors

Python MySQL

MySQL Get Started MySQL Create Database MySQL Create Table MySQL Insert MySQL Select MySQL Where MySQL Order By MySQL Delete MySQL Drop Table MySQL Update MySQL Limit MySQL Join

Python MongoDB

MongoDB Get Started MongoDB Create DB MongoDB Collection MongoDB Insert MongoDB Find MongoDB Query MongoDB Sort MongoDB Delete MongoDB Drop Collection MongoDB Update MongoDB Limit

Python Reference

Python Overview Python Built-in Functions Python String Methods Python List Methods Python Dictionary Methods Python Tuple Methods Python Set Methods Python File Methods Python Keywords Python Exceptions Python Glossary

Module Reference

Random Module Requests Module Statistics Module Math Module cMath Module

Python How To

Remove List Duplicates Reverse a String Add Two Numbers

Python Examples

Python Examples Python Compiler Python Exercises Python Quiz Python Server Python Syllabus Python Interview Q&A Python Bootcamp Python Certificate

Machine Learning - Scale


Scale Features

When your data has different values, and even different measurement units, it can be difficult to compare them. What is kilograms compared to meters? Or altitude compared to time?

The answer to this problem is scaling. We can scale data into new values that are easier to compare.

Take a look at the table below, it is the same data set that we used in the multiple regression chapter, but this time the volume column contains values in liters instead of cm3 (1.0 instead of 1000).

Car Model Volume Weight CO2
Toyota Aygo 1.0 790 99
Mitsubishi Space Star 1.2 1160 95
Skoda Citigo 1.0 929 95
Fiat 500 0.9 865 90
Mini Cooper 1.5 1140 105
VW Up! 1.0 929 105
Skoda Fabia 1.4 1109 90
Mercedes A-Class 1.5 1365 92
Ford Fiesta 1.5 1112 98
Audi A1 1.6 1150 99
Hyundai I20 1.1 980 99
Suzuki Swift 1.3 990 101
Ford Fiesta 1.0 1112 99
Honda Civic 1.6 1252 94
Hundai I30 1.6 1326 97
Opel Astra 1.6 1330 97
BMW 1 1.6 1365 99
Mazda 3 2.2 1280 104
Skoda Rapid 1.6 1119 104
Ford Focus 2.0 1328 105
Ford Mondeo 1.6 1584 94
Opel Insignia 2.0 1428 99
Mercedes C-Class 2.1 1365 99
Skoda Octavia 1.6 1415 99
Volvo S60 2.0 1415 99
Mercedes CLA 1.5 1465 102
Audi A4 2.0 1490 104
Audi A6 2.0 1725 114
Volvo V70 1.6 1523 109
BMW 5 2.0 1705 114
Mercedes E-Class 2.1 1605 115
Volvo XC70 2.0 1746 117
Ford B-Max 1.6 1235 104
BMW 2 1.6 1390 108
Opel Zafira 1.6 1405 109
Mercedes SLK 2.5 1395 120

It can be difficult to compare the volume 1.0 with the weight 790, but if we scale them both into comparable values, we can easily see how much one value is compared to the other.

There are different methods for scaling data, in this tutorial we will use a method called standardization.

The standardization method uses this formula:

z = (x - u) / s

Where z is the new value, x is the original value, u is the mean and s is the standard deviation.

If you take the weight column from the data set above, the first value is 790, and the scaled value will be:

(790 - 1292.23) / 238.74 = -2.1

If you take the volume column from the data set above, the first value is 1.0, and the scaled value will be:

(1.0 - 1.61) / 0.38 = -1.59

Now you can compare -2.1 with -1.59 instead of comparing 790 with 1.0.

You do not have to do this manually, the Python sklearn module has a method called StandardScaler() which returns a Scaler object with methods for transforming data sets.

Example

Scale all values in the Weight and Volume columns:

import pandas
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()

df = pandas.read_csv("data.csv")

X = df[['Weight', 'Volume']]

scaledX = scale.fit_transform(X)

print(scaledX)

Result:

Note that the first two values are -2.1 and -1.59, which corresponds to our calculations:

[[-2.10389253 -1.59336644]
 [-0.55407235 -1.07190106]
 [-1.52166278 -1.59336644]
 [-1.78973979 -1.85409913]
 [-0.63784641 -0.28970299]
 [-1.52166278 -1.59336644]
 [-0.76769621 -0.55043568]
 [ 0.3046118  -0.28970299]
 [-0.7551301  -0.28970299]
 [-0.59595938 -0.0289703 ]
 [-1.30803892 -1.33263375]
 [-1.26615189 -0.81116837]
 [-0.7551301  -1.59336644]
 [-0.16871166 -0.0289703 ]
 [ 0.14125238 -0.0289703 ]
 [ 0.15800719 -0.0289703 ]
 [ 0.3046118  -0.0289703 ]
 [-0.05142797  1.53542584]
 [-0.72580918 -0.0289703 ]
 [ 0.14962979  1.01396046]
 [ 1.2219378  -0.0289703 ]
 [ 0.5685001   1.01396046]
 [ 0.3046118   1.27469315]
 [ 0.51404696 -0.0289703 ]
 [ 0.51404696  1.01396046]
 [ 0.72348212 -0.28970299]
 [ 0.8281997   1.01396046]
 [ 1.81254495  1.01396046]
 [ 0.96642691 -0.0289703 ]
 [ 1.72877089  1.01396046]
 [ 1.30990057  1.27469315]
 [ 1.90050772  1.01396046]
 [-0.23991961 -0.0289703 ]
 [ 0.40932938 -0.0289703 ]
 [ 0.47215993 -0.0289703 ]
 [ 0.4302729   2.31762392]]

Run example »



Predict CO2 Values

The task in the Multiple Regression chapter was to predict the CO2 emission from a car when you only knew its weight and volume.

When the data set is scaled, you will have to use the scale when you predict values:

Example

Predict the CO2 emission from a 1.3 liter car that weighs 2300 kilograms:

import pandas
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()

df = pandas.read_csv("data.csv")

X = df[['Weight', 'Volume']]
y = df['CO2']

scaledX = scale.fit_transform(X)

regr = linear_model.LinearRegression()
regr.fit(scaledX, y)

scaled = scale.transform([[2300, 1.3]])

predictedCO2 = regr.predict([scaled[0]])
print(predictedCO2)

Result:

[107.2087328]

Run example »


×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
sales@w3schools.com

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
help@w3schools.com

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning. Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness of all content. While using W3Schools, you agree to have read and accepted our terms of use, cookie and privacy policy.

Copyright 1999-2024 by Refsnes Data. All Rights Reserved. W3Schools is Powered by W3.CSS.